
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 File IO

 Device Explorer (send files to/from the
emulator)

© 2024 Arthur Hoskey. All
rights reserved.

Read/Write Data to a File

Read/Write to Files

 Use Kotlin I/O classes to read/write data to files.

 Files are saved on the device.

 For example…

© 2024 Arthur Hoskey. All
rights reserved.

Open File

Open File

 Here is code to open files for input and output:
val FILE_NAME = "data.txt"

// Output Setup Code

val fos = openFileOutput(FILE_NAME, Context.MODE_PRIVATE)

val out = PrintStream(fos)

// Code to write to PrintStream goes here…

// Input Setup Code

val fis = openFileInput(FILE_NAME)

val scanner = Scanner(fis)

// Code to read from scanner goes here…

Note: The method openFileOutput needs a context to compile correctly. For example, if
you call openFileOutput inside of an anonymous listener it will require getting the
context:

applicationContext.openFileOutput(FILE_NAME, Context.MODE_PRIVATE)

Open file for

output that is

private to the

app (in app

sandbox)

Connect file output

stream to a PrintStream

© 2024 Arthur Hoskey. All
rights reserved.

Open file for input (will look

in the private app directory)

Connect file input stream to

a Scanner

Read Data from a File Using a
Scanner

Read Data from a File Using a Scanner

 Use a FileInputStream and Scanner to read data from an input
file (the Scanner class is similar to Java's Scanner class).

val FILE_NAME = "data.txt"

// Open file input stream.

val fis = openFileInput(FILE_NAME)

// Connecte file input stream to a Scanner

val scanner = Scanner(fis)

var line = ""

while (scanner.hasNext()) {

 line = scanner.nextLine()

 println(line)

}

© 2024 Arthur Hoskey. All
rights reserved.

hasNext returns true if there is more

data to read. It will loop until it

reaches the end of the file.

Read one line of data (as a string)

from the file.

Write Data to a File Using a
PrintStream

Write Data to a File Using a PrintStream

 Use FileOutputStream and PrintStream to write data fo a file (PrintStream is similar
to Java's PrintStream class).

try {

 val FILE_NAME = "data.txt"

 // Create a new output file stream that’s private to this app

 val fos = openFileOutput(FILE_NAME, MODE_PRIVATE)

 // Create the PrintStream

 val out = PrintStream(fos)

 // Write data to the file

 var i = 100

 out.printf("i = %d\n", i)

} catch (e: FileNotFoundException) {

}

Format specifiers in the

printf are similar to Java.

This will write i = 100 to

the file.

© 2024 Arthur Hoskey. All
rights reserved.

Device Explorer

 Device File Explorer allows you to get/send files between the emulator
and computer. You can also create files on the emulator.

 Go to: View|Tool Windows|Device Explorer.

 A window containing Device Explorer will open on the right side.

© 2024 Arthur Hoskey. All
rights reserved.

View | Tool Windows | Device Explorer

Device Explorer

Window

Copy File from AVD Private Area to
Computer

Copying Files To/From the Emulator

 Use the Device Explorer to do this.

 Save File to Computer (from Emulator). Right-click file in Device
Explorer to get a context menu. There will be a Save As… menu
option.

 Send File to Emulator (from Computer). Right-click directory in
Device Explorer and you will get a context menu. There will be an
Upload… menu option.

 Files are stored in in the following directory:

/data/data/<your package name>/files

© 2024 Arthur Hoskey. All
rights reserved.

Create/Edit New File in Emulator

 Default App-Specific File Directory. Inside Device Explorer navigate to
the following directory:

/data/data/<your package name>/files

Note: This directory will not appear in Device Explorer until you run your app
the first time (running the first time will install your app on the emulator and
create this directory for you). If you ran your app and you do not see this
directory click the synchronize icon (double arrow icon) in the Device
Explorer toolbar.

 Create New File (in Emulator). Right click the directory and a context
menu will appear (use the files directory detailed above). Choose New|File
from the context menu.

 Open/Edit New File (in Emulator). Double click the file in the emulator
to open it (the file will open in a tab in Android Studio). When you open it
the Clear Read-Only Status dialog will appear. Click OK in this dialog and
you will be able to edit the file. The file being edited is now on the
computer. You to send this file back to the emulator (as detailed in the
previous slide) to see the edits in the emulator. Hover on the file tab in
Android Studio to get the full location of the file (helps when sending file
to emulator).

© 2024 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: Read/Write Data to a File
	Slide 4: Open File
	Slide 5: Read Data from a File Using a Scanner
	Slide 6: Write Data to a File Using a PrintStream
	Slide 7: Device Explorer
	Slide 8: Copy File from AVD Private Area to Computer
	Slide 9: Create/Edit New File in Emulator
	Slide 10: End of Slides

